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Systems in which the object of control undergoes random variations are 
considered. A control law is determined from the conditions of a minimum 
integral criterion of quality on a finite interval of time. The existence 
of a solution is discussed. In this work the results obtained in [I.21 
are developed for finite intervals of time; in the exposition the 
terminology and the symbols introduced in [21 are used. 

1. Let the transient response of the system be described by the equa- 

tion 

~=ji(t,51,...tZn,rl,E) (i=l,..., n), E = E 0, 511 * * *, Gl, 7) (1.1) 

Here I: = {xi(t)) is the error vector of the controlled quantity, < 

is a scalar (the control quantity), q(t) is a parameter characterizing 
the random variations in time of the controlled object. The functions 

fi and S are continuous and satisfy the conditions of Lipschitz for all 

the arguments. 

The absence of distortions and lags in the loops of the system is 

assumed, i.e. the controlling quantity < at each mcment of time is 

formed on the basis of exact information (the knowledge of x(t) and 

q(t)) about the operation of the control. 

We shall consider, that the process q(t) is hlarkovian and is either 

continuous [3, p. 3071 or purely discontinuous, impulsive [4, p.234 . We 
shall describe q(t) from the given distribution function 

F (6 a; r, P) = P 01 (r) < P \ ? (1) = aI (r > t) 

42 
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Here P is the conditional probability. We assume that the transfer 
probability q(t) = a - q(t).< p may be broken into 

P{~(T)=Q\TJ(~)=z}=~-q((t,a)At+o(At) 

p @I(T) < P, T (r) # a \ tl (9 = a> = q (t, a, P) At + o (At) (1.2) 

Here q(t, a), q(t, a, is) are known functions; o(At) is a small 
quantity of order higher than At = T - t. Then the realizations $‘(t; 
will be in steps and the process q(t) itself is purely discontinuous. 

We shall consider the discontinuous process q( t) according to the de- 
scription given in [31, whereupon the existence of the following limits 
is assumed 

A1 (t, a) = L11,-& c [rl (t + At) - al &,F (t, a; t + At, rl) 
. 

--a, 
(1.3) 

4 (t, a) = ;,m_& T [q(t +At)-ax]*d,F(t, a;t +At, q) (1.4) 
-CO 

Let us assume, that all acceptable values of TJ lie* in the interval 

‘11 < 7 < q2 (whereupon it is possible to have q2 = - qI = a). 

We shall now set some functions o( t, x, c) and r[x( t)] positive de- 
iinite with respect to x1, . . . , x,, and which determine the criterion of 
quality of the transient response 

where M is the symbol of the conditional mathematical expectation for 
the initial conditions tg = 0, x0, q,,. 

The problem consists in finding a controlling quantity c = co such, 
that for the system (1.1) the value of the functional (1.5) is minimal 
for each x0 and q0 E (ql, q2) when c = co. 

In the solution of the system (1.1) we shall assume that the vector 
function {t, x(t), q(t), c(t, x(t), q(t))) which can be strongly de- 
finite, is a solution of the integral equations, corresponding to the 
system (1.1) [4, p.2481 . It is possible to represent the solution x(t) 

l For a discontinuous process q(t), it is possible to aseume that the 
veriatlons of q occur on the interval qI < q <q2. 
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as consisting of the realizations of 9(t), resulting fran the realiza- 
tions of qf’(t) and satisfying (1.1). 

The general approach to the solution of problems of such a type, 
based on the method of functions of Liapunov with the use of the notion 
of dynamic programing [S], is stated in detail in 11, 21. The singular- 
ities, appearing in the considered case, are described below. 

2. Let us assume that a function u(t, x, q) satisfying the following 
requirements is found 

a) The 
ments. 

b) The 
satisfies 

c) For 

function v(t, x, q) is continuous with respect to all argu- 

derivative dM{v}/dt of the mathematical expectation v(t,x,q) 

the conditions [21 

tdV @}) __t--- 
df 10 

-1 o(t, 5, to) = mint dq+“] 

(2.1) 

(2.2) 

t = T, q E (ql, q2) and all values of x, the equality 

u(T, 5, rl) = r[zl (2.3) 

is fulfilled. 

The functions u” and co, satisfying these conditions, are solutions 
of the given problem, i.e. e represents the optimal controlling 
quantity and 

v” (0, 2,, qo) = min+J (x0, qO; T) 

In the following co and u” are called optimal functions. 

Proof. We shall consider the random trajectory {x1(x0, qo; q, t)) 
generated by the initial conditions to = 0, x,,, q,,. 

We shall average [2] the expression (2.1) with respect to the random 

quantities x1(x0, qo, t) and q(t. qo) and shall integrate on the inter- 

val 0r time [O, ~1 the obtained equality 

dM iv (1, 2, ?)\zot ‘-IO} -.~ 
dt = - M (0 u, 2, E)\zo. %I 

v (0, 20, rlo) = M {i 0 (t, 2, El dt + v (T. 2 V), q (TN} 
0 

(2.4) 

(2.5) 
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Taking (1.5), (2.3) and (2.5) into consideration, we have 

J b%, qo; T) = u (0, IO, rtol (2.61 

On the interval (0, 7) the function M{v(t, X, q)) is decreasing by 
virtue of (2.4) and as a consequence of the fulfillment of conditions 
(a) and (c), is positive in sign. We shall prove, that for v = YO, 
{ = to the minimum of the integral (I. 5) is attained. 

Reasoning from the contrary, we shall assume the existence of a con- 

trolling quantity {*(t, X, q) # t”(t, x, q) such that for the solutions 

ft, x(t), q(t), t*(t)) of equation (1.1) for 5 = <* and the initial con- 
ditions x0 and rh, the inequality 

J<’ (x0, %I: T) < JkD (x0, 170; q (2.7) 

is satisfied. 

From conditions (2.2) there follows 

(2.8) 

Averaging and integrating (2.8) according to the stated scheme, we 
obtain 

The inequality (2.9) contradicts the equality (2.6) and the assump- 
tion made in (2.7). This proves the optimality of c and Y’. 

Note 2.9. It is assumed that the functions V, co and $* are suffi- 
ciently smooth, so that the previously mentioned derivations are valid. 

Note 2.2. The exposed statement of the problem and the approach to 
its solution are not changed if in the constitution of the right-hand 
side of the equation (1.1) there is an impulse disturbance y = {vi), 
the description of which is given in [21. Nor does the presence of dis- 
turbances introduce any major differences in further considerat ions. 
Therefore the results of the present work can be generalized for systems 
which are under the influence of a disturbance of the indicated form 
(Section 8). 

3. To establish the equations determining u” and co, it is necessary 
to know the expression of the derivative dM{v}/dt, formed by virtue of 
(1.1). 

If the process q(t) is discontinuous, then, assuming q1 \<q <qg we 
have f21 
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We shall indicate the derivation of the expression dM{v)/dt for a 

continuous process q(t), by starting from considerations*, analogous to 

those made in [2,7] for the derivation of (3.1). 

Let us assume that the function v(t, x, q) is differentiable with 

respect to t, x, q as many times as necessary. We determine the incre- 

ment of the function Y, using Taylor’s expansion 

(3.2) 

‘Ihe discarded terms give after averaging 

magnitude o(At). Computing the mathematical 

the initial conditions {Xi}, t, q, dividing 

when At - 0, we obtain, taking (1.3), (1.4) 

sought for formula 

a component of the order of 

expectation of (3.2) for 

by At and taking the limit 
into consideration, the 

‘Ihe equations which determine the optimal functions v”( t, x, q) , 
t’(t, x, T$ in the continuous case are obtained** from conditions (2.1)) 

(2.2) and by taking (3.3) into consideration 

‘1) g + 0 (C 5, E) = 0 (3.4) 

(3.5) 

l in terms of the theory of probable processes the derivative dll(v)/dt 
is determined by an infinitely small linear generating operator [61. 
A graphical explanation of the determination of the derivative is 
presented in [21. 

l * If the controlling quantity is restricted by an additional limita- 
tion, then this limitation must be taken into consideration when 
searching for the minimum of the left-hand side of (3.4). 



Optimal control of system with randor properties 47 

Since it is difficult to solve equations (3.4) and (3.5) in the 
general case, it is possible to make an approximate construction of the 
functions v” and to by using the method of introduction of a parameter 
in the right-hand sides of equation (1.1) and in the criterion of 
quality 121 . 

Note 3.1. In the discontinuous case, equation (3.4) is replaced by 

4. Let us assume, that the transient response is described linearly 

by 

2 = fi Qj tt, q) xj + ci (t, q) E 
jxl 

(4.1) 

‘Ibe quality of the process is evaluated by the integral 

J (a+,, tl,,; T) = M {i (i ei,zixj + t’) dt + i dipi (T) zj (T)) (4.2) 
0 1. i i. j 

Here e.., d.. = const are the known coefficients of the positive de- 
finite foils o’ind I-. We shall search for an optimal function u(t,x,q) 
of quadratic form 

V (t9 2, rl) = 2 hjttt ‘7)W+ (4.3) 
i. j 

requiring furthermore, in agreement with the item (c) of Section 2 

bij (T, q) = dij (4.4) 

If (4.1), (4.2)) (4.3) are taken into account in the case of a con- 
tinuous process q(t), the system of equations (3.4), (3.5) takes the 
form 

Z[ n abij 

+ i h 

~+u,rl)~ 

(i b*jZj)($ aijZj + C*i) = - (ieij*iZj + E2) 

i=l i=l j=l i. j 
(4.5) 
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E = - i(Ci i bijXj> (4.6) 
i=l j=l 

Eliminating the function 5 from (4.5), (4.6), we get, comparing the 
coefficients of the products xi*j 

(4.7) 

Ihe obtained system (4.7) consists of partial differential equations 
of the parabolic type. In order to solve it, in addition to the initial 
conditions (4.4), it is necessary, generally speaking, to assign also 
on the interval 7, < q < q2, the boundary conditions for q = q1 and 
q = q2 for all t e [O, fl, determined by the assumed law of probability 
distribution F( t, a; T, q) . Similarly, we ass- (Section l), that the 
realizations of qP(t) do not go outside the limits of the interval 
(q,, q2) during the interval of time 10, ?iJ and attain inside this 
interval the points t = T. Then the conditions (4.4) define completely 
the solutions bkS(t, q) of the system (4.7). 

Note 4.1. A satisfactory pbsical exruple of a one-di~enslonal prob- 
lem is given by the heat flow in a homogeneous bar of finite length. in- 
sulated on every side Including the ends. 

For the discontinuous process q(t), taking (3.1) into consideration, 
we have 

ar + 2 (bki% + betalk) + r [bks(tt S) - bks(t, q)I deq (t, rls PI- 
ab,, ‘7’ 

kl nr 

(4.8) 

‘Ibe solution of the system of differential equations (4.8) is de- 
fined, once the initial conditions (4.4) are given. 

5. Let us consider the question of the existence of a solution for 
the system (4.8). In the problem examined, any continuous controlling 
quantity <* which satisfies the condition of Lipschitz with respect to 
x is admissible if the functional (1.5) is finite on the interval [O, 7’1 
for < = I*. ‘lberefore, assuming that the acbnissible controlling quanti- 
ties t* exist, we shall show, that among them, the solution (4.8) 
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determines in a single manner the optimal co securing the minimum of 

(4.2). Let us introduce the m-dimensional vector function 

Let us represent by a = z(q) the elements of the space of the con- 

tinuous vector functions z(q) on the interval [q,, q2]. We shall deter- 

mine the norm of the space {a} by the equality 

n~ll=sopnI~(‘l)l=S~Pn/(~~~)8/ 
m 

Ihe vector equality 

az 0, 11) 
- = cp 6 2, rl) at 

corresponding to the system (4.8), can be rewritten into the fonn 

$=fV, 4 

(5.1) 

(5.2) 

Let us notice, that at every instant of time the right-hand side of 

(5.2) is an operator determined on the continuous functions z(q), and, 

consequently, when changing to (5.2) we shall have an operator equation 

in the space {a}. 

We shall show that if the function q(t, IJ, p) satisfies certain con- 

ditions, the operator f(t, a) actually transforms the elements of the 

space {a) into the space {a}, i.e. transforms the continuous functions 

a = z(q) into continuous functions y(q) = f[t, z(q)] for each t E[O,T]. 

Let US assume that the function q(t, q, p) admits a density 

.fl 

q(k rl, P) = s P(& rl, T)dT 
nl 

whereupon p(t, q, p) is a continuous function of its arguments. 

On the right-hand side of (4.8) the continuity of all terms with re- 

spect to q is obvious excepted, perhaps, the expression of the form 

32 

RV? 11) = 5 [z(P) -z(~)lP(k Y? B)dP 
n1 

for every z(q). Let us consider an increment of R(t, q) with respect to 

Q 
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‘Ihe function p(t, TJ, @) determined on the closed interval [ql, q2], 

is also continuous with respect to q. Thus, taking into consideration 
the equality 

we get 

limAR=O ror q’-+q (5.3) 

which shows the continuity with respect to q of the right-hand side of 

(4.8). It can also be shown that the operator f(t, a) in equation (5.2) 
is continuous with respect to t and a, and satisfies locally the condi- 
tion of Cauchy-Lipschitz with respect to a 

H!U, a’)--f(t, ~“)~~\<L~~~‘-a”~~ for tE[O, T] (5.4) 

‘lhen in the neighborhood of some initial point, the requirements for 

the local theorem of existence [8] of the solution of (5.2) are satis- 

fied. 

Note 5.1. In the more general case of the description of the process 
q(t) by the functions p(t. q). q(t. T). p) the fulrillment of condition 

(5.3) and the continuity of the right-hand side of (5.2) with respect 
to t are guaranteed if the function q(t, q, /3> bounded ror q E [ql, q21 
and non-decreasing with respect to p is basically continuous c3. 9.2371 
with respect to q and t (as well as with respect to the parameter). Then 
re can use for the proor the theorem of Kelly according to which the 
following equality takes place for the continuous function r(t. p) 

yz YI 

lim 5 2 (t’, P) $q (I’, q’, P) = s 2 (4 I% daq (4 tl, P) for 1’ --, 4 tl’ --t q 
Y1 YI 

where y1 < p < y2 represent the points of continuity in the interval of 
variation of q. 

Thus, if the function q( t, ‘1, f3) is basically continuous with respect 

to q and t (in particular, when q( t, q, p) has a continuous density 

p(t, ‘I, P)), th e equation (5.2) can be considered as an operator equa- 
tion, whereupon its only solution exists in the neighborhood of the 

initial point. 

The solution found in such a way, for the neighborhood of the point 

{T, a) (condition (4.4)) can be extended to the complete segment [O, Tl 

in the direction of decreasing t’s. ‘lhe proof of such a possibility is 

analogous to the reasoning made in [91. 
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6. “he approximate method described in [21 appears as a practical 
procedure for constructing the functions u”(t, x, q) and <Ott, X, q) 
without requiring solution of a system of equations of the type of (3.4) 
(3.5). We shall expose this method on the example of the linear system 
(4.1) when the process q(t) is discontinuous. 

Let us consider the auxiliary problem in which the transfer pro- 
bability q(t) = a - q(t) \<P(T > t) is described in the following manner 

where Pa is the conditional probability for some fixed value of the para- 
meter 6, which varies between the limits OQ 6 < 1 and is determined in 
such a manner that in the considered case the values of q(t) satisfy 
the equality 

q (k a; 6) = *q (t, a), q (t, a, p; 9) - +q (t, a, f-3) 

We shall search for an optimal function u”( t, n, q, 6) of the form 

II 

Do = 2 bij (t, 11; 6) XiXj 

i.i 

For 6 = 0, the problem for each q E (ql, q2) is considered as if it 
were determined for fixed values of the parameter TJ = 
into consideration, we get 

qP. Taking (4.8) 

-a7_ -!- i (bki& i- &i aik) - (5 c&n) ($ cibsi) = - akoekr 

(6.1) 
%3 

(k, s = i,..., n) 
izl j=l i=l 

Taking the solution of (6.1) for some initial value, and varying 
afterwards the value of the parameter fi between 0 and 1, it is possible 
to find the solution of the initial problem, if the law of variation of 

bks as a function of B is known. 

Ihe function uO(t, x, q; 6 ) is determined from the equation 

Differentiating (6.2) 
&/a+ = g, we obtain 

with respect to 19 and denoting for simplicity 
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59 P; *)--_gttP 2, 1; e)l&3q(t, rl, P) = 
nt 

= - 9’]v(t, 2, p; a) s --v@, 2, ri; 6)1 &q@, 1, P) (6.3) 
71 

Substituting into (6.3) the form u”, and comparing the coefficients 
of the terms in zixj, we obtain a system of equations determining the 
solution b,,(t, (1; fl) for each value of 6. ‘lhus the solution found 
above for 6 = 0 can be extended for every 6 up to unity*. 

‘7. Let us show that if the functions co, v”, are solutions of the 
given problem for the finite interval of time [0, fi , i.e. uO(t, x, xl) = 

min J(T) for < = go, then the optimal solution for T = QI can be found by 
taking the limit 

u - limv”(t, 5, q), co- Eoo = lim%“(t, 5, q) for T--P- 

Let us look at the problem of finding 

mine J (x0, qo; M) = M {To& 2, %)dl) 
0 

and let us compare it to the problem of the minimum of J(xc, qa; ‘I’) 
investigated earlier, assuming r[x] = 0. Let us assume that the randan 
parameter v can only take a finite number of values {ql, . . . , qk) and 
that the transfer probability ‘li 
in the following manner: 

- qj is described by the matrix IlpijllIb 

For the problem considered in Sections 4 and 5 for T = m, the con- 
trolling function which, in addition to the finiteness of the functional 
(4.2) insures also the asymptotic stability with respect to the pro- 
bability of the solution x = 0 of the system (4.1) is admissible. This 

l The proof of the possibility of such an extension in principle is not 

considered here. As was noted in [21, this question is closely re- 

lated to the question of the existence of a solution for the system 

(4.8). It can be confirmed that such a possibility follows from the 

existence of equation (4.8). 
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is equivalent to the existence requirement of a positive definite 
quadratic form u(t, n, q) such that for the admissible $, we have* 

~ < - k (xl2 + . . . + zn2) dt (k > 0) 

53 

Using this criterion, it is possible to indicate a sufficient condi- 
tion of existence of an admissible controlling quantity for the linear 
system (4.1). 

Theorem 7.1. Let at any fixed instant of time, for a constant value 
of q of the interval [ql, q2], the following conditions be fulfilled: 

1. ‘he system of vectors c(t, q), A(t, qlc(t 
is linearly independent. 

2. The following bounds exist 

It is then possible to find numbers D > 
inequalities 

aaii I I dt GDP 
hi I I at \<D 

are satisfied, it is possible to design an 
quantity. 

The proof of Theorem 7.1 is carried out 

q), -**a A”-‘(t,q)c(t,rl) 

(7.1) 

0 and K > 0 such that if the 

(7.2) 
l=bs 

admissible controlling 

accordingly to the model 

given in [lo. p.8321, taking into consideration in the present case the 
non-stationary behavior of the system (4.1). 

Note 7.1. It is possible to prove a statement analogous to Theorem 

7.1 for a more general description of the discontinuous prccess q(t) by 

l The solution x = 0 will be called asymptotically stable with respect 
to the probability, if for any two numbers E > 0 and p 0, it is 
possible to find a 6 > 0 such that the inequality 

P {(r12 + . . . + r,“, < EZ\(X102 + . . . + z,,“, < 6”) > 1 - p 

is satisfied, and furthermore, for any number o > 0 

\irnm P {(s12 (t) + . . . + 2,” (t)) < 0) = 1 
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the rOnOti0nf4 q(t, a), p(t. a, @, and also rot a continuous process 

rl(C). In the rirst case, the last or’ the inequalities (7.2) in the con- 

ditions oi the theorem is replaced by 

and in the second case, taking (1.3). (1.4) into consideration 

(7.4) 

Note 7.2. The Theorem 7. I remains valid ii the bounds (7.2), (7.3) or 
(7.4) are given in the average on a certain interval 0r time [te, te +TI, 
i.e. ii the iolloring conditions are satisried 

where Ol(t), 8*(t) are some continuous iunctions subject 
ities 

tO+T t,+r 
1 1 

-T 5 
CD1 (q d8 < %, -?- s @,rU)dtdxr 

t* 1. 

(KS, u4 > 0 are 8urricientiy small constants). 

to the inequal- 

Let us pursue the examination of the linear system (4.1). Let US con- 
sider as admissible the controlling quantities existing for 0 < TQm, 
and consequently 

(7.6) 

for some admissible c = {*. 

But from (7.6) there follows that the function uO(T, n, q) for any 
fixed T = t, % = x(t), ‘1 = q(r) is bounded for all T >T. Since in such 

a case v o does not decrease when T increases, there is a limit u@ = 

lim v”, whereupon the function ~,(-r, x, q) is positive definite. It re- 

mains to show that the function u, and the corresponding controlling 

quantity &,, are solutions of the optimal problem when T = 0~. 

Let us consider in detail the stationary case, i.e. 
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Then for T = m, any instant of time can be taken as an initial point. 

Thus it is sufficient to investigate for the case of the function 

~~(0, x, q). We have 

For T = w, the functional (7.7) has a lower limit u* with respect to 

the set of admissible t = c*. Let us assume the contrary, i.e. 

Let, for instance 

v* < VW 

But then, there is a <,** such that the inequality 

is satisfied. 

It is obvious that u” < u**. When T increases 

verges towards a value equal 
T=m 

which contradicts the assumpt 

0 v,, therefore we 

2’03 \ < v+* 

on (7.8). Let now 

1’00 < r* 

(7.8) 

the function v” con- 

get at the limit, when 

(7.9) 
We shall denote by cO*(O, x, q) = lim t”(O, x, q) when T - 0~. ‘Ike 

existence of that limit and the linearity of <,+(O, x, q) with respect 

to x follows from the existence of the limit of ~‘(0, x, q) when T- w 
and from the formula (4.6). W e shall note the uniformity of co* with 

respect to q when x is fixed. 

Since v+ is the lower limit with respect to c of the optimized func- 

tional, the inequality (7.9) cannot be satisfied if co* belong to the 

admissible controlling values and furthermore, if 

.I/ {iti, (X, I&*) dt) =: ?‘p (7.10) 

0 

We shall show, that in fact, (7.10) is fulfilled. Let us choose a 

number T, > T such that at each instant of time of the interval O<t<T 
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the following inequality is fulfilled (for all possible T)) 

where 6 is a number chosen a priori as small as desired, and t1 corre- 

sponds to the interval LO, T,I . 

As a consequence of the integral continuity there follows from (7.11) 

that 

whereupon y - 0 when 6 - 0. 

Hence 

f+(z, Eo*)dt}<M{\q2G 51w}+r(~)-+rn+7(~) (7.12) 

0 ‘0 

By virtue of the arbitrary smallness of y, there results from (7.12) 

that for all T > 0 

(7.13) 

From (7.13) it follows that for T = Q) we obtain (7.10). ‘Ihis com- 

pletes the proof. Thus 

u-(0, I, q) = mint M {“SW (z, E) dt} =jimmuo (0, z, 9) 
0 

Therefore, from the existence proved in Section 5 of a solution in 

the interval [O, fl for linear systems and the existence of an admis- 

sible controlling quantity when T = m, there follows the existence of a 

solution of the optimal problem when T = 03. 

‘he considered limit process can be used for approximate calculations 

when T = 0~. 

8. Let us present the solution of the problem when the transient re- 

sponse is described by the equation 
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dx 
- = A (h 4 5 + c (t, $ E + 7 (t) dt (8.1) 

where the vector function {vi(t)) is a random impulse disturbance. 

It is assumed that yi( t) can be represented in the form 

7i = x PiYi (tk) 8 (t - tk) 
k 

Here vi(t) is a random value, the vector p = {pi} is a constant and 
6(t) represents the E-function. 

‘lhe random moments tk of occurrence of the impulses are distributed 
on the t-axis according to a Poisson distribution with frequency h. It 
is possible to compute [71 the size of the unit step of the ith coordi- 

a sufficiently small interval of time 
AAt. Let us assume that M{v,) = 0; the 

which has for coefficients CY; . = M{v;v ;} is 
such disturbance if p&ented’ii [ll, 

p.631 .) 

In other respects the equation 
shall evaluate the quality of the 
[O, fl with the integral (4.2). 

(8.1) is not different from (4.1). We 
transient response on the interval 

For equation (4.1) when {yi) = 0, the optimal function u(t, x, ‘1) on 
the interval [0, T] can be fo&d (Section 4) in the form of the 
quadratic form (4.3) f rom equations of the foxm (4.5) to (4.6) (or (4.6), 
(4.8)) for the given initial conditions (4.4). 

Therefore the condition (2.1) 

(?SE ),=, 

Calculating the expression of 

takes the form 

= - i C?ijXiXj - Ea 

i. j 
(8.2) 

the derivative dMu)/dt, we get [lOI 

for y # 0 by virtue of system (8.1) 

dM (u) 
--&- = (qq_+ s(t, T) (S (t, q) = h i hj (t, T) p+jaij) (8.3) 

f, j 

where s( t, ‘1) is a non-negative function. 

We shall now construct a function V(t, n, q) in the following manner: 

JJ (t, 2, q) = ZJ (& 2, tl) + %bb rl) (8.4) 

On the right-hand side of (8.4) the first component is the quadratic 
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form found above, and the second is determined by the conditions 

dM (VA) --==. 
dt -s(t, q), VI G-9 q(T)) = 0 (8.5) 

We notice that by using (8.5) it can be shown that 

Taking (8.2) to (8.5) into consideration, we find for the derivative 
cf/!{I’)/dt by virtue of equation (8.1) 

dM (V) 
-z--=- jj f?ijXiXj - E2 

i i 
(84 

It can be verified that the constructed function V(t, x, ‘1) satis- 
fies the optirmm condition (2.2). ‘lh erefore, this function is optimal. 
The optimal controlling quantity co corresponding to V, remains the same 
as in the case {vi) E 0, i.e. to can be found from formula (4.6). 

Note 8.1. If {vi} # 0, then 

Mli i ) eij xixj 

i. i 

does not tend towards zero rhen T - *. Therefore the integral (4.2) 

rhen T - m does not converge. We shall evaluate the quality of the pro- 

cess by the criterion 

03.7) 

The solution of the problem under such coaditione is aCCOupli8hed t 

taking the liuit. when T - a, Of 811 OPtin 8OlUtiOll {v, co) Of the iu- 

terval LO, T]. The liuiting process is similar to the one given above. 

As a result re shall find that 

T 

&w = lim E’, 
T-W 

mine J(‘) (q, q0) =fy= -i- 
s 

M (8 (4 9 (0)) dt 

0 

A8 this rork was being completed the 8uthOr became 8causinted uith 

the uorh of Kalman [la], rhere randomly varying sgatema of the discrete 

type are considered. whereupon a limiting process M8lOgOUS to the one 

described In t3ection 7. is used in the Proofs. 
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